Molding Compounds and Resins Information

LEARN MORE ABOUT MOLDING COMPOUNDS AND RESINS

Molding Compounds and Resins Search Form

Search manufacturer catalogs by these specifications:

More Specifications

Molding Compounds and Resins Information

Show all Molding Compounds and Resins Manufacturers

Molding compounds and resins are industrial plastics and polymers that are suitable for forming. They are used in injection molding, compression molding, reaction injection molding (RIM), resin transfer molding (RTM), and blow molding. Types include thermoset resins, gel elastomers, encapsulants, potting compounds, composites, and optical grade materials. Typically, products are supplied as pellets, liquids, and powders.

The GlobalSpec SpecSearch Database contains material listings on these type of molding compounds and resins.

Elastomersand rubber materials are characterized by their high degree of flexibility and elasticity (high reversible elongation).They are based on a variety of different systems, including silicone, polyurethane, chloroprene, butyl, polybutadiene, neoprene, natural rubber or isoprene, and other synthetic rubber or compounds.

Compositecompounds are types of resins made from two or more constituent materials with significantly different physical or chemical properties. One of these constituents is generally a strengthening phase, reinforcement fibers, toughening phase, or other specialty fillers that provide unique properties.

Thermoplasticsare polymers that turn to liquid when heated and turn solid when cooled. They can be repeatedly remelted and remolded, allowing parts and scraps to be reprocessed. In most cases they are also very recyclable.

Thermosetsor thermosetting plastics are polymer materials that have been irreversibly cured. They are generally stronger than thermoplastics due to polymer cross-linking and are better suited for high-temperature applications (below their decomposition points). They tend to be more brittle than thermoplastics and many cannot be recycled due to irreversibility.

Siliconemolding compounds are used mainly in electrical applications because of their good chemical and electrical properties. They feature high arc resistance, high dielectric strength, and a low dielectric constant. Silicone molding compounds also provide good resistance to corona and electric breakdown, even after exposure to moisture and higher temperatures.

Most molding compounds are composite materials that consist of epoxy resins, phenolic hardeners, silicas, catalysts, pigments, and mold release agents. A products chemistry and filler material help to determine key mechanical, physical, thermal, and electrical properties.

Molding compounds and resins exhibit properties based on their composition. Special consideration should be given to properties such use as temperature, coefficient of thermal expansion, tensile strength, and dielectric strength.

Use temperatureis the allowable temperature range in which the compound can operate effectively which determines what environments a resin can be used in.

Thecoefficient of thermal expansionis a measure of the tendency of the compound to change in volume in response to temperature, which could limit space restraints under certain operating temperatures.

Thetensile strengthis the maximum stress a material can withstand while being stretched or pulled before necking deformation occurs.

Dielectric strengthis the maximum electric field strength that a material can withstand without breaking down, and is most important when a resin is used with a semiconductor or other electrical device.

Several different types of plastic molding compounds are used to encapsulate semiconductor devices. General-purpose products are suitable as long as they provide high flexural strength and exert relatively large stresses on the encapsulated device, which typically use a thicker package type. Low-stress molding compounds are better for encapsulating thin packages. Molding resins with a high thermal conductivity are required for encapsulating high-power devices. Surface mount technology (SMT) requires a low moisture absorption rate and/or high flexural strength.

Read user Insights about Molding Compounds and Resins

Related Products & ServicesConductive Compounds

Conductive compounds provide an electrically and/or thermally conductive path between components.

Conformal coatings encapsulate circuit boards and their electronic components in order to prevent the ingress of moisture, fungus, dust and other environmental contaminants.

Epoxy adhesives are chemical compounds for joining components. They require clean surfaces and are valued for their toughness and resistance to chemical and environmental damage.

Gel elastomers are highly viscoelastic polymer gel materials that have excellent shock absorption and damping characteristics.They are available in a variety of material types and grades.

Pressure sensitive adhesives (PSA) and contact adhesives adhere to most surfaces with very slight pressure. They are available in solvent and latex or water-based forms.

Silicone adhesives and sealants have a high degree of flexibility and a very high temperature resistance (up to 600 F), but lack the strength of other epoxy or acrylic resins.

Thermoplastics and thermoplastic materials soften when heated and harden when cooled. They can withstand many heating and cooling cycles and are often suitable for recycling.

Energy Conversion (Battery/Fuel Cell/PV)

epoxy resin productpvc resin manufacturermakrolonchico sealing compoundppahdpe linertorlondoming resinlawn vacuum hosemoldable plasticmoldable rubberptfe compression moldingfiberglass resin moldingmelamine molding compoundphenolic boardpolyethylene resinpvc plastisolrtv silicone moldrtv silicone mold makingsilicone molding compoundsmc vacuumstarting formulation adhesivebulk molding compoundsclear plastic domeepoxy molding compoundepoxy resin kitflow injection analysishdpe pellet manufactureric molding process controlinjection molding resins

© Copyright 2018 IEEE GlobalSpec – All rights reserved. Use of this website signifies your agreement to theIEEE Terms and Conditions.

HomeSite MapContactEmployment OpportunitiesPrivacy Policy